作业三 (10月27日课堂上交)

关于康托集(The Cantor Set)的一些基本性质。Enjoy math!

在区间 [0,1] 中,去掉正中间的 1/3 开区间 (1/3,2/3) ,我们得到两个不相交的的闭区间 [0,1/3] 和 [2/3,1] 。对于这两个闭区间,再分别去掉它们正中间的 1/3 开区间,我们得到四个互不相交的闭区间。如此这样一直下去,最终剩下的集合被称为康托集。

用比较数学的语言来讲,用 K_1 代表第一步中去掉的一个"中间 1/3 开区间", K_2 和 K_3 代表第二步中去掉的两个(为什么是两个?)"中间 1/3 开区间", K_4 ,···, K_7 代表第三步中去掉的四个(为什么是四个?)"中间 1/3 开区间",···。则康托集定义为

$$X = [0,1] - \bigcup_{n=1}^{\infty} K_n \cdot$$

以上为背景。

在下面问题的解答中,可以直接使用如下事实

"如果集合 A_1 , A_2 , ··· 是一列非空有限集合并且两两互不相交,则 $|\bigsqcup_{n=1}^{\infty} A_n| = \aleph_0$ 。"

关于上述事实的证明,可能比较直接的方法就是仿照 $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$ 的证明。唯一区别在于对于 $\mathbb{N} \times \mathbb{N}$,在坐标系中可以用可数多个水平点集的无交并来表示,其中每个水平点集对应着 \mathbb{N} 。为了证明上述事实,每个水平点集都包含有限个元素(同时至少包含一个元素)。仿

造 $|\mathbb{N}|=|\mathbb{N}\times\mathbb{N}|$ 的证明思路,应该不难证明 $\bigsqcup_{n=1}^{\infty}A_n$ 和 \mathbb{N} 之间存在 一一对应。

以下为问题:

- a) 证明: 康托集 X 非空 。
- b) 对于上述的开区间 K_i , 设 $K_i=(x_i^L,x_i^R)$ 。证明对于任意 $n\in\mathbb{N}_{\geq 1},\ x_n^L\in X$ 且 $x_n^R\in X$ 。
 - c) 证明: $|X| \geq \aleph_0$ 。
 - d) 定义集合 Y 为

$$\{(y_1, y_2, \cdots) : y_i = \mathsf{L} \$$
或者 $y_i = \mathsf{R}, \ \forall i \in \mathbb{N}_{\geq 1} \}$ 。

定义从康托集 X 到 Y 的映射 f 如下:

对于任意的 $x \in X$,如果在第一步中去掉中间的 1/3 开区间后得到的两个闭区间 [0,1/3] 和 [2/3,1] 中,x 位于左边的闭区间 [0,1/3] 中,则在 f(x) 的第一个位置写下 L (left),如果 x 位于右边的闭区间 [2/3,1] 中,则在 f(x) 的第一个位置写下 R (right)。在第一步后剩下的包含 x 的那一个闭区间中,第二步会去掉该闭区间的中间 1/3 开区间,并得到两个长度为原来包含 x 的那个闭区间的 1/3 的闭区间。如果 x 在这两个闭区间中左边的那个中,则 f(x) 的第二个位置写下 L ,否则写下 R 。依此类推 ···

按照上面的描述,我们定义了

$$f \colon X \longrightarrow Y, \ x \mapsto f(x)$$
 .

证明: f 为单射。(提示: 如果康托集中有 $x_1 \neq x_2$,则 $|x_1 - x_2| = \delta > 0$ 。如果 $f(x_1)$ 和 $f(x_2)$ 的第一位相同,则 $|x_1 - x_2| < 1/3$, · · ·)

注: 事实上,上面构造的 f 也是满射(证明以后可能会让你们自己完成)。因此我们有 |X| = |Y| 。我们在课上已经证明了 Y 是不可数集合,故而康托集 X 是不可数集。

e) 给定以下事实:

i) 考虑 \mathbb{R} 中的任意子集 A , A 上如果可以定义长度(这里记为 A 是 "有长度"的),则记其长度为L(A) 。

注: 并不是所有的子集上都可以定义长度/体积的(比如考虑课上提到过的Banach-Tarski悖论,如果球的所有子集都是有体积的,则会出现类似1=1+1的矛盾)

- ii) 如果 A 上 "有长度",则 $L(A) \geq 0$ 。
- ii) 对于任意 a < b , $a, b \in \mathbb{R}$, (a, b), [a, b), (a, b) 和 [a, b] 都是"有长度"的,并且其长度都是 b a 。
- iii) 对于 $\mathbb R$ 中的子集 A 和 B, 如果 A 和 B 都是"有长度"的并且 $A\subset B$,则 B-A 也是"有长度"的,并且 L(B-A)=L(B)-L(A)。
- iv) 对于 \mathbb{R} 中的"有长度"的一列子集 A_1 , A_2 , ···, 如果它们两两不相交,则它们的无交并也是"有长度"的,并且

$$L(\bigsqcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} L(A_n),$$

其中 $\sum_{n=1}^{\infty}L(A_n)$ 定义为 $\lim_{N o \infty}S_N$, 而 S_N 定义为 $\sum_{n=1}^NL(A_n)$ 。

注: 上述性质也被称为"可数可加性"。

基于以上列举之事实,证明康托集 X 是 "有长度"的,并且 L(X) = 0。(提示:考虑康托集的定义方式,并应用上述的四条事实)